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Calculation of the average Green’s function of electrons in
a stochastic medium via higher-dimensional bosonization
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Institut für Theoretische Physik der Universität Göttingen, Bunsenstr. 9, D-37073 Göttingen,
Germany

Received 20 May 1996, in final form 30 August 1996

Abstract. The disorder-averaged single-particle Green’s function of electrons subject to a
time-dependent random potential with long-range spatial correlations is calculated by means
of bosonization in arbitrary dimensions. For static disorder our method is equivalent to
conventional perturbation theory based on the lowest-order Born approximation. For dynamic
disorder, however, we obtain a new non-perturbative expression for the average Green’s function.
Bosonization also provides a solid microscopic basis for the description of the quantum dynamics
of an interacting many-body system via an effective stochastic model with Gaussian probability
distribution.

Over the past 20 years the motion of a quantum particle in a time-dependent random potential
has been the subject of many works [1–3]. Most authors have focused on the case of a
single isolated electron, where numerical as well as non-perturbative analytical methods
are available [1]. The equally important problem of calculating the average single-particle
Green’s function in the presence of a filled Fermi sea has not received much attention
[2]. The purpose of the present paper is to show that the functional integral formulation
of bosonization [4–8] offers a new non-perturbative approach to this problem in arbitrary
dimensionsd.

The bosonization approach ind > 1 has recently been re-discovered by Haldane [9],
who generalized the earlier ideas of Luther [10]. For a detailed description of the geometric
construction leading to higher-dimensional bosonization we would like to refer the reader
to [9]. Here we briefly recall the basic features of Haldane’s construction. The first step
is the subdivision of the Fermi surface into disjoint patchesK̃α

3 and the introduction of a
collection of local coordinate systems with origins on the Fermi surface (this is called an
atlas [11]). In d dimensions each patch covers an area3d−1 of the Fermi surface, where
the cut-off3 should be chosen such that within a given patch the curvature of the Fermi
surface can be locally neglected. For spherical Fermi surfaces, this means that3 should
be chosen small compared with the Fermi wavevectorkF . Each patch is then extended
into a d-dimensional boxKα

3,λ with radial heightλ and volume3d−1λ. One proceeds by

defining local density operators associated with the boxes,ρ̂α
q = ∑

k 2α(k)ĉ
†
kĉk+q, where

ĉk is the annihilation operator of an electron with wavevectork (for simplicity we consider
spinless electrons in this work), and the cut-off function2α(k) is unity for k ∈ Kα

3,λ

and vanishes otherwise. In the functional bosonization approach [4–8] the calculation of
the interacting Green’s function is then mapped via a Hubbard–Stratonovich transformation
onto the problem of calculating theaverageGreen’s function of an effective non-interacting
system in a dynamic random potentialφα, which couples to the local densitiesρ̂α.
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To see the connection between functional bosonization and random systems more clearly,
let us briefly describe the basic features of the functional bosonization approach developed in
[6–8]. For simplicity, let us consider spinless fermions. The starting point is the imaginary
time Grassmannian functional integral representation of the Matsubara Green’s function of
an interacting many-body system with two-body density–density interactionsf αα′

q

G(k) ≡ G(k, iω̃n) = −β

∫ D {ψ} e−Smat {ψ}ψkψ†
k∫ D {ψ} e−Smat {ψ} (1)

where the Euclidean actionSmat {ψ} is the following functional of the Grassmann fieldψ

Smat {ψ} = S0{ψ} + Sint {ψ} (2)

S0 {ψ} = β
∑

k

[−iω̃n + εk − µ
]

ψ†
kψk (3)

Sint {ψ} = β

2V

∑
q

∑
αα′

f αα′
q ρα

−qρ
α′
q . (4)

Hereεk is the energy dispersion,µ is the chemical potential,β is the inverse temperature,
and V is the volume of the system. The local density operator is now represented by a
composite Grassmann fieldρα

q = ∑
k 2α(k)ψ†

kψk+q . Throughout this work we shall use
the convention thatk = [k, iω̃n] and q = [q, iωm], where the fermionic frequencies are
ω̃n = 2π(n + 1

2)/β and the bosonic ones areωm = 2πm/β. Introducing bosonic auxiliary
fields φα via a Hubbard–Stratonovich transformation,G(k) can be exactly rewritten as

G(k) =
∫

D{φα}P{φα}[Ĝ]kk ≡
〈
[Ĝ]kk

〉
Seff

. (5)

Here Ĝ−1 is an infinite matrix in momentum and frequency space, with matrix elements
given by the formal Dyson equation [Ĝ−1]kk′ = [Ĝ−1

0 ]kk′ − [V̂ ]kk′ , where Ĝ0 is the
non-interacting Matsubara Green’s function matrix, [Ĝ0]kk′ = δkk′G0(k), with G0(k) =
[i ω̃n − εk + µ]−1. The generalized self-energy matrix̂V is [V̂ ]kk′ = ∑

α 2α(k)V α
k−k′ , with

V α
q = i

β
φα

q . The normalized probability distributionP{φα} is

P{φα} = e−Seff {φα}∫ D {φα} e−Seff {φα} (6)

where the effective action for theφα field is of the formSeff {φα} = S2{φα} + Skin{φα},
with

S2{φα} = 1

2

∑
q

∑
αα′

[f̃
−1

q
]αα′

φα
−qφ

α′
q (7)

Skin{φα} = −Tr ln[1 − Ĝ0V̂ ]. (8)

Heref̃
q

is a matrix in the patch indices, with matrix elements [f̃
q
]αα′ = β

V
f αα′

q . The action
Skin{φα} can be calculated perturbatively by expanding equation (8) in powers of theφα

field. The validity of this expansion is controlled by the generalized closed-loop theorem,
which is discussed in detail in [7]. At the level of the Gaussian approximation one obtains

Skin{φα} ≈ V

2β

∑
q

∑
αα′

5αα′
0 (q)φα

−qφ
α′
q (9)
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where the ‘patch’ polarization is given by

5αα′
0 (q) = − 1

2βV

∑
k

[
2α(k)2α′

(k + q)G0(k)G0(k + q)

+2α′
(k)2α(k − q)G0(k)G0(k − q)

]
. (10)

To calculate the matrix elements [Ĝ]kk it is convenient to choose the patches larger
than the range of the interaction in momentum space. In this case we may write [8]
[Ĝ]kk = ∑

α 2α(k)[Ĝα]kk. It is convenient to shift the origin in momentum space to the
centrekα of patchK̃α

3 on the Fermi surface:k = kα + q, k′ = kα + q′. For smallq we
may then linearize the energy dispersion,εkα+q − µ ≈ vα · q. It follows that the infinite
matrix Ĝα satisfies∑

q̃ ′

[
δq̃,q̃ ′ [Gα

0(q̃)]−1 − V α
q̃−q̃ ′

]
[Ĝα] q̃ ′q̃ ′′ = δq̃,q̃ ′′ . (11)

Here [Gα
0(q̃)]−1 = iω̃n − vα · q, where q̃ = [q, iω̃n] involves fermionic Matsubara

frequencies. DefiningV α(r, τ ) = ∑
q ei(q·r−ωmτ)V α

q and

Gα(r, r′, τ, τ ′) = 1

βV

∑
q̃q̃ ′

ei(q·r−ω̃nτ )e−i(q′·r′−ω̃n′ τ ′)[Ĝα] q̃q̃ ′ (12)

it is easy to see that equation (11) is equivalent to[−∂τ + ivα · ∇r − V α(r, τ )
] Gα(r, r′, τ, τ ′) = δ(r − r′)δ∗(τ − τ ′) (13)

whereδ∗(τ − τ ′) = 1
β

∑
n e−iω̃n(τ−τ ′). Equation (13) can be solved exactly by means of a

trivial generalization of Schwinger’s ansatz [12]. The result is [6–8]

Gα(r, r′, τ, τ ′) = Gα
0(r − r′, τ − τ ′)e8α(r,τ )−8α(r′,τ ′) (14)

Gα
0(r, τ ) = 1

βV

∑
q̃

ei(q·r−ω̃nτ )

iω̃n − vα · q
(15)

8α(r, τ ) =
∑

q

ei(q·r−ωmτ)

iωm − vα · q
V α

q . (16)

Gaussian averaging of equation (14) with the effective actionSeff {φα} given in equations (7)
and (9) yields〈Gα(r, r′, τ, τ ′)

〉
Seff

= Gα
0(r − r′, τ − τ ′)eQα

int (r−r′,τ−τ ′) (17)

where for patch-independent bare interactions of the form [f̃
q
]αα′ = β

V
fq the Debye–Waller

factor is given by

Qα
int (r, τ ) = 1

βV

∑
q

f RPA
q [1 − cos(q · r − ωmτ)]

(iωm − vα · q)2
. (18)

Here f RPA
q = fq [1 + 50(q)fq ]−1 is the random-phase approximation for the effective

interaction, and50(q) = ∑
αα′ 5αα′

(q) is the total non-interacting polarization.
In the field theory literature [5] the auxiliary fieldφα is called disorder field. This

terminology suggests that the functional integral formulation of bosonization can also be
used to calculate the average Green’s function of non-interacting electrons in a dynamic
random potential. This connection between bosonization and disordered systems is obscured



10486 P Kopietz

in the operator approach [13, 14], but it is quite clear in the functional formulation. Indeed,
in this work we shall show that the functional bosonization approach developed in [6–
8] provides a useful method to calculate the average single-particle Green’s function of
electrons in a stochastic medium.

Let us first consider non-interacting spinless electrons at high densities subject to
an imaginary-time random potentialU(r, τ ). The imaginary-time Green’s function
G(r, r′, τ, τ ′) is defined as usual[

−∂τ − (−i∇r)
2

2m
+ µ − U(r, τ )

]
G(r, r′, τ, τ ′) = δ(r − r′)δ∗(τ − τ ′) (19)

wherem is the mass of the electrons. We assume that the random potential has a Gaussian
probability distribution with zero average and general covarianceU(r, τ )U(r′, τ ′) =
C(r − r′, τ − τ ′), where the overbar denotes averaging with respect to the probability
distribution of the random potential. In Fourier space we have thenUqU−q = βV Cq , where
the Fourier components are defined by

Cq =
∫ β

0
dτ

∫
dr e−i(q·r−ωmτ)C(r, τ ) (20)

and analogously forUq . As pointed out in [2], the complicated quantum dynamics of
an interacting many-body system can sometimes be described by an effective stochastic
model. In this case the real-time quantum dynamics can be obtained from the imaginary
time dynamics via analytic continuation. Moreover, imaginary time random potentials play
an important role in the so-called directed polymer problem [3].

We are interested in the average Green’s functionG(r − r′, τ − τ ′) = G(r, r′, τ, τ ′).
Within our bosonization approachG(r − r′, τ − τ ′) is calculated in the most direct way:
first we obtain the exact Green’s functionG(r, r′, τ, τ ′) for a given realization of the
random potential and then this expression is averaged. However, because the approximations
inherent in higher-dimensional bosonization are only accurate for small momentum transfers,
we need to assume that there exists a cut-offqc � kF such thatUq becomes negligibly small
for |q| >∼ qc. But this means that for wavevectors|q| >∼ qc the Fourier coefficientsCq of the
covariance function can be neglected. In other words, we can only study random potentials
with sufficiently long-range spatial correlations, such thatqc � kF . Evidently the most
popular model ofδ-function correlated disorder cannot be treated within our bosonization
approach. However, in view of the fact that a random potential with a finite correlation range
q−1

c is expected to lead, for distances|r| � q−1
c , to results for single-particle properties

qualitatively identical to those that would be obtained for aδ-function correlated random
potential, this restriction does not seem to be very serious. By choosing the above-mentioned
box cut-offs such thatqc � 3, λ � kF , we obtain cut-off-independent results for physical
correlation functions at distances|r| � q−1

c .
As discussed above, due to the subdivision of the Fermi surface into small patches it is

possible to linearize the energy dispersion locally within a given patch,(kα+q)2/(2m)−µ ≈
vα · q, wherekα is the centre of patch̃Kα

3. We then replace equation (19) by afirst-order
partial differential equation for the patch Green’s functionGα(r, r′, τ, τ ′)[−∂τ + ivα · ∇r − U(r, τ )

] Gα(r, r′, τ, τ ′) = δ(r − r′)δ∗(τ − τ ′). (21)

The similarity between equations (21) and (13) is obvious. The solution of equation (21)
can be read off from equations (14)–(16)

Gα(r, r′, τ, τ ′) = Gα
0(r − r′, τ − τ ′) exp

[
1

βV

∑
q

Uq

ei[q·r−ωmτ ] − ei[q·r′−ωmτ ′]

iωm − vα · q

]
. (22)
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The Gaussian average of equation (22) yields the usual Debye–Waller factor

Gα(r, r′, τ, τ ′) ≡ Gα(r − r′, τ − τ ′) = Gα
0(r − r′, τ − τ ′)eQα

dis (r−r′,τ−τ ′) (23)

with

Qα
dis(r, τ ) = − 1

βV

∑
q

Cq

1 − cos(q · r − ωmτ)

(iωm − vα · q)2
. (24)

The total disorder-averaged Matsubara Green’s function can then be written as

G(k, iω̃n) =
∑

α

2α(k)

∫
dr

∫ β

0
dτ e−i[(k−kα)·r−ω̃nτ ]Gα

0(r, τ )eQα
dis (r,τ ). (25)

Note that from equation (15)

Gα
0(r, τ ) = δ(d−1)(rα

⊥)

( −i

2π

)
1

rα + i|vα|τ (26)

whereδ(d−1)(rα
⊥) is a Diracδ-function of thed − 1 componentsrα

⊥ of r that are orthogonal
to vα. BecauseGα

0(r, τ ) is proportional toδd−1(rα
⊥), we may replaceQα

dis(r, τ ) →
Qα

dis(r
αv̂α, τ ) in equation (25), whererα = v̂α · r, with v̂α = vα/|vα|. This completes the

solution of the non-interacting problem.
Because disorder and interactions are treated on an equal footing in our bosonization

approach, it is easy to include the effect of electron–electron interactions. The random
potential gives rise to an additional term

Sdis{ψ} = β
∑

q

∑
α

U−qρ
α
q (27)

in equation (2). This leads to the replacementV α(r, τ ) → (i/β)φα(r, τ ) + U(r, τ ) in
equation (13). To perform the averaging operation it is convenient to integratefirst over the
φα field and then over the disorder potential, because in this way we avoid the appearance of
disorder-dependent denominators. Hence, it isnot necessary to resort to the replica approach
to perform the disorder averaging. As a result we find that for disordered interacting
electrons equation (25) should be modified by replacingQα

dis(r, τ ) by

Qα
tot (r, τ ) = Q̃α

dis(r, τ ) + Qα
int (r, τ ) (28)

with Qα
int (r, τ ) given in equation (18). The contributioñQα

dis(r, τ ) in equation (28) is
formally identical withQα

dis(r, τ ) in equation (24), except that the bare covariance function
Cq should be replaced by the screened covariance function

C̃q = Cq

[1 + 50(q)fq ]2
. (29)

The denominator in this expression has a simple physical interpretation: it describes the
screening of the disorder potential by the electron–electron interactions. Ind = 1 a
result similar to equation (28) has recently been obtained by Kleinert [15], and by Hu
and Das Sarma [16]. While the latter authors did not obtain the screening of the impurity
potential, the expression given by Kleinert [15] is exactly recovered from our result by
settingd = 1. Note, however, that Kleinert has combined functional bosonization [4] with
the replica approach to handle the disorder averaging. As already mentioned, we can avoid
the introduction of replicas by integratingfirst over the Hubbard–Stratonovich field and
average over the disorder at the end.

Evidently equation (28) does not contain interference terms describing weak localization
effects. These are known to play an important role in the low-energy behaviour of the
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average Green’s function of an interacting disordered Fermi system in the metallic regime.
Note that diagrammatically weak localization is described in terms of infinite impurity
ladders called Cooperon and Diffuson propagators [17], which satisfy the diffusion equation.
But the diffusive motion involves large changes in the direction of the particle due to many
successive (possibly small-angle) scatterings. Such a motion cannot be correctly described
within the approximations inherent in higher-dimensional bosonization at the level of the
Gaussian approximation [6, 7, 13, 14] (which amount to (i) the neglect of momentum
transfer between different patches and (ii) the local linearization of the energy dispersion
[8]), because in this case the electron trajectories are approximated by straight lines in
the directions of the local velocitiesvα. Obviously the weak localization effects must be
contained in the corrections to the straight-line approximation for the electron trajectory.
Hence, the physics of weak localization will only emerge if we can generalize our approach
such that it describes changes in the direction of the electron propagation due to successive
scatterings. This can be achievedeither by taking momentum transfer between different
patches (so-called around-the-corner processes) into account,or by considering patches
with a finite curvature (i.e. by retaining the quadratic terms in the expansion of the energy
dispersion at the Fermi surface) [18]. The equivalence of these procedures follows from
the fact that any patch with a finite curvature can be subdivided into a larger number of
approximately flat sub-patches, such that scattering from the original curved patch can also
be described in terms of scattering from the set ofcoupledbut flat sub-patches. The latter
point of view leads, in the calculation of the Green’s function for fixed background field [8],
to a system of coupled first-order differential equations, which can always be transformed
into a smaller system of differential equations with higher-order derivatives. A systematic
method for including the non-linearities in the energy dispersion into higher-dimensional
bosonization has recently been developed in [19]. At present it is not clear whether it is
possible to obtain weak localization effects with this approach.

Let us now show that equation (25) reduces for static disorder to the usual perturbative
result. In this case only theωm = 0 component of the covariance functionCq is non-zero.
For simplicity let us assume thatCq has a separable form,Cq = δωm,0βγ0e−|q|1/qc , where
|q|1 = ∑d

i=1 |qi | [20]. Then we obtain from equation (24) forV → ∞

Qα
dis(r

αv̂α, τ ) ∼ −|rα|
2`α

|rαqc| � 1 (30)

where the inverse elastic mean free path is given by1
`α = qc

π

d−1 γ0

|vα |2 . We conclude that at

large distancesGα(r, τ ) = Gα
0(r, τ )e−|rα |/2`α

. In Fourier space this implies for|q| � qc

G(kα + q, iω̃n) = 1

iω̃n − vα · q + sign(ω̃n)(i/2τα)
(31)

where 1/τα = |vα|/`α is the inverse elastic lifetime. It is easy to see that this result agrees
with the usual perturbative expression for the average self-energy in the lowest-order Born
approximation, which is given by [21]

Im6(k) = γ0

V

∑
q

e−|q|1/qc ImG0(k + q, −i0+). (32)

Because forqc � kF only wavevectors with|q| � kF contribute, we are allowed to
approximate the Green’s function on the right-hand side of equation (32) by its linearized
form. Then we obtain

1

τα
= 2Im6(kα) =

(qc

π

)d−1 γ0

|vα| (33)
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in agreement with the above bosonization result. In [22] we have shown that a Debye–Waller
factorQα(F, T ) which diverges forr = 0 and|rα| → ∞ as a power law (∼ |rα|µ, µ > 0)
completely washes out any singularity in the momentum distributionnk. Hence the average
momentum distribution is for any finite disorder analytic at the Fermi surface. Of course, this
is a well known result [21]. It is also easy to understand why in one-dimensional interacting
Fermi systems any finite disorder destroys the algebraic singularity ofnk, which is one of the
characteristics of a Luttinger liquid [23]. Recall that this algebraic singularity is due to the
logarithmic divergence ofQα

int (r, 0) for rα → ∞. At sufficiently large distances this weak
logarithmic divergence is negligible compared with the linear divergence ofQα

dis(r, 0).
The case of a time-dependent random potential is more interesting. To calculate the

average Green’s function, we should specify the dynamic covariance functionCq . If we
would like to model an underlying interacting many-body system in thermal equilibrium
by a random system, then the form ofCq is completely determined by the nature of the
interaction. In the case of the coupled electron–phonon system at high temperatures an
explicit microscopic calculation ofCq has been given by Girvin and Mahan [2]. However,
their identification ofCq with the parameters of the underlying many-body system is
based on a perturbative calculation of the self-energy at high temperatures.Our functional
bosonization approach allows us to relate the covariance functionCq of the random system
in a much more direct and essentially non-perturbative way to the underlying many-body
system.Evidently, the requirement that the average Green’s function of the stochastic model
should be identical with the Green’s function of the many-body system without disorder
is equivalent toQα

dis(r, τ ) = Qα
int (r, τ ), whereQα

dis(r, τ ) and Qα
int (r, τ ) are given by

equations (24) and (18). It immediately follows that the connection between the effective
stochastic model and the interacting many-body system is given by the surprisingly simple
relation

Cq = −f RPA
q . (34)

For example, to describe longitudinal acoustic phonons with dispersionωq that are coupled
to the electrons via the Coulomb potentialf cb

q = 4πe2/q2, we should choose the covariance
function [24]

Cq = − f cb
q

1 + f cb
q 5ph(q)

5ph(q) = 50(q) + γω2
q

ω2
m + ω2

q

(35)

whereγ measures the strength of the electron–phonon coupling. We would like to emphasize
that in spite of its apparent simplicity, equation (34) is a highly non-trivial result, because
it is based on a controlled summation of the entire perturbation series of the many-body
problem via bosonization. The crucial point is thatbosonization produces an exponential
resummation of the perturbation series, so that the effect of the interactions on the Green’s
function can be expressed exclusively in terms of a Debye–Waller factorQα

int (r, τ ), which
can then be directly compared with the Debye–Waller factorQα

dis(r, τ ) due to disorder.
Of course, the dynamic random potential could also be due to some non-equilibrium

external forces, in which case the above identification with an underlying many-body system
is meaningless. As an example, let us consider a Gaussian white-noise random potential,
with covariance given byCq = C0e−|q|1/qc . Substituting this into equation (24) and taking
the limit V, β → ∞, the integrations can be performed analytically, with the result

Qα
dis(r

αv̂α, τ ) = iWτ

rα + i|vα|τ + isign(τ )q−1
c

(36)

whereW = (C0/2π)(qc/π)d−1. Because the Debye–Waller factor vanishes atτ = 0, we
haveGα(r, 0) = Gα

0(r, 0), so that the dynamic white-noise random potential does not affect
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the momentum distributionnk. It is easy to see that this is an artefact of the white-noise
limit. Note, however, that forτ/rα → ∞

Gα(r, τ ) ∼ −δ(d−1)(rα
⊥)

eW/|vα |

2π |vα|τ . (37)

The above limit determines the density of states at the Fermi energy, which in turn can be
expressed in terms of a renormalized effective mass. Hence, the random potential enhances
the effective mass by a factor of eW/|vα |. This is intuitively clear: the electrons become
heavier because they have to overcome the resistance of the random potential. The Fourier
transformation ofGα(r, τ ) can be calculated exactly. Forv̂α · q > 0 the result is

Gα(q, iω) = 1

Wqc + iω − vα · q

{
1 + Wqce−(v̂α ·q)/qc

iω − vα · q
exp

[
−W

v̂α · q

iω − vα · q

]}
. (38)

If we now analytically continue this expression to real frequencies by replacing iω →
ω + i0+, we encounter an essential singularity atω = vα · q. We suspect that this is an
artefact of the linearization.

In summary, we have shown that functional bosonization can be used to calculate the
disorder-averaged Green’s function of electrons at high densities that are subject to a random
potential with long-range spatial correlations. While in the static limit we have recovered the
usual perturbative result, for time-dependent random potentials we have obtained a highly
non-trivial expression for the averaged single-particle Green’s function. One of our main
results is equation (34), which puts the description of an interacting many-body system via
an effective stochastic model on a solid microscopic basis. Although our method describes
disorder and interactions on an equal footing, the corresponding contributions to the Debye–
Waller factors are (apart from the screening of the random potential) additive, so that
interference terms containing weak localization effects do not appear. However, it might be
possible to calculate the single-particle Green’s function via higher-dimensional bosonization
beyond the Gaussian approximation, taking momentum-transfer between different patches or
the non-linearities in the energy dispersion approximately into account [7, 19]. In this case
bosonization ind > 1 could become a new powerful approach to disordered interacting
Fermi systems in the diffusive regime, which can deal simultaneously with disorder and
interactions and does not have the disadvantages of the replica trick. Note that the diffusive
regime does not exist ind = 1, so that the physics of weak localization can only be discussed
within higher-dimensional bosonization. Work in this direction is in progress.
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